Non-regular languages (Pumping Lemma)

- Introduction

Non Regular language How can we prove that a language is not regular?

Non-regular languages

$$
\begin{aligned}
& \left\{a^{n} b^{n}: \quad n \geq 0\right\} \\
& \left\{v v^{R}: v \in\{a, b\}^{*}\right\}
\end{aligned}
$$

Regular languages $a * b$
 $b^{*} c+a$

$b+c(a+b)^{*}$ etc...
$\mathcal{H o w}$ can we prove that a language L is not regular?

Prove that there is no $\mathcal{D F A}$ or $\mathfrak{N F A}$ or $R E$ that accepts L

Difficulty: this is not easy to prove (since there is an infinite number of them)

Solution: use the Pumping Lemma!!!

A page onfole must

 contain at least two pigeons

n pigeons

$-5-\sqrt{5}-\cdots \cdots \cdots .$.

m pigeontioles

$n>m$

n pigeons
m pige onfioles
$n>m$
There is a pigeonfole with at le ast 2 pigeons

The Pigeonhole Principle

DFAs

Consider a DFA with 4 states

Consider the walk of a "long "string: aaaab (Length at least 4)

A state is repeated in the walk of aaaab
$\left(q_{1}\right) \xrightarrow{a} \xrightarrow[\rightarrow]{a} \xrightarrow{a} \rightarrow(92) \xrightarrow{a} \xrightarrow{a}(94)$

The state is repeated as a result of the pigeontiole principle

Pig on:
(wal kstates)
Are more than

Nests:
(Automatonstates)
Repeated state

Consider the walk of a "long "string: $a a b b$ (Length at least 4)

Due to the pigeonhole principle:
A state is repeated in the walk of $a a b b$

$$
\left(q_{1}\right) \xrightarrow{a}\left(q_{2}\right) \xrightarrow{a}\left(q_{3}\right) \xrightarrow{b} \xrightarrow{(q 4)} \xrightarrow{b}
$$

The state is repeated as a result of the pigeontiole principle

Page ans: (walk states)

Re more than
(Automaton states)

In General: If $|w| \geq$ \#states of DFA, by the pigeontrole principle, a state is repeated in the walk W

Walk of $w=\sigma_{1} \sigma_{2} \cdots \sigma_{k}$

Arbitrary $\mathcal{D F A}$

Repeated state

$|w| \geq \#$ states of DFA $=m$

Pie ins: (wal kstates)
Walk of w

Are
more
than
$\mathcal{N e s t s : q 1 ~ q 2 ~}$

(Automato instates)
A state is
repeated

The Pumping Lemma

Take an infinite regular language L (contains an infinite number of strings)

There exists a DFA that accepts L

Take string $w \in L$ with $|w| \geq m$ (number of states of $\mathcal{D F A}$)
then, at least one state is repeated in the walk of w

There could be many states repeated

Take q to be the first state repeated

One dimensional projection of walk w :
First
Second
occurrence
occurrence

Unique states

We can write $\quad w=x y z$

One dimensional projection of walk w :
first
Second
occurrence
occurrence

$$
x=\sigma_{1} \cdots \sigma_{i} \quad y=\sigma_{i+1} \cdots \sigma_{j} \quad z=\sigma_{j+1} \cdots \sigma_{k}
$$

In $\mathcal{D} \mathcal{F A}: \quad w=x y z$

contains only

Observation: \quad length $|x y| \leq m$ number

$$
\begin{aligned}
& \text { of states } \\
& \text { of } \mathcal{D F A}
\end{aligned}
$$

x

Observation: \quad length $|y| \geq 1$
Since there is at least one transition in loop

We do not care about the form of string Z.
7. may actually overlap witt the patis of x and y

Additional string: The string $x z$ is accepted

Do not follow loop

Additional string: The string x y ye is accepted

Follow loop
2 times

x

Additional string: The string $x y y y z$ is accepted

Follow lo op 3 times

Therefore: $\quad x y^{i} z \in L \quad i=0,1,2, \ldots$ Language accepted by the $\mathcal{D F A}$

x
z.

In other words, we described:

Tfe Pumping Lemma!!!

- Given a infinite regular language L
- there exists an integer m (critic llength)
- for any string $w \in L$ with length $|w| \geq m$
- we can write $w=x y z$
- with $|x y| \leq m$ and $|y| \geq 1$
- suchtrat: $x y^{i} z \in L \quad i=0,1,2, \ldots$

In the book:
Criticallengtr $m=$ Pumping length p

Applications

the Pumping Lemma

Observation:
Every language of finite size fins to be regular
(we can easily construct an $\mathfrak{N F F A}$
that accepts every string in the (language)

Therefore, every non-regular language
frs to be of infinite size
(contains an infinite number of strings)

Suppose you want to prove that
An infinite language L is not regular

1. Assume the opposite: L is regular
2. The pumping lemma should hold for L
3. The the pumping lemma to obtain a contradiction
4. Therefore, L is not regular

Explanation of Step 3: How to get a contradiction

1. Let m betrecriticallengtf for \mathcal{L}
2. Choose a particular string $w \in L$ which satisfies the length condition $\mid w \notin m$
3. Write $w=x y z$
4. Showtrat $\quad w^{\prime}=x y^{i} z \notin L \quad$ for some $\quad i \neq 1$
5. This gives a contradiction, since from pumping lemma $\quad w^{\prime}=x y^{i} z \in L$

Note:
It suffices to show that only one string $w \in L$ gives a contradiction

You don't need to obtain contradiction for every $w \in L$

Example of Pumping Lemma application

Theorem: The language $L=\left\{a^{n} b^{n}: n \geq 0\right\}$ is not regular

Proof: Ole the Pumping Lemma

$L=\left\{a^{n} b^{n}: n \geq 0\right\}$

Assume for contradiction that L is a regular language

Since L is infinite we can apply the Pumping Lemma

$$
L=\left\{a^{n} b^{n}: n \geq 0\right\}
$$

Let m be the critical length for \mathcal{L}

Pickastring w suctifat: $w \in L$

$$
\text { and length }|w| \geq m
$$

$$
\text { We pick } w=a^{m} b^{m}
$$

From the Pumping Lemma:
we can write $w=a^{m} b^{m}=x$ y z witflengtis $|x y| \leq m,|y| \geq 1$

$$
w=x y z=a^{m} b^{m}=a \ldots a a \ldots a a \ldots a b \ldots b
$$

$$
\begin{array}{lll}
x & y & z
\end{array}
$$

$$
\text { Thus: } y=a^{k}, \quad 1 \leq k \leq m
$$

$$
x y z=a^{m} b^{m}
$$

$$
y=a^{k}, \quad 1 \leq k \leq m
$$

From the Pumping Lemma:

$$
\begin{aligned}
& x y^{i} z \in L \\
& i=0,1,2, \ldots
\end{aligned}
$$

Thus: $x y^{2} z \in L$

$$
x y z=a^{m} b^{m} \quad y=a^{k}, \quad 1 \leq k \leq m
$$

From the Pumping Lemma: $x y^{2} z \in L$

$$
\begin{aligned}
& x y^{2} z=\overbrace{\underbrace{a \ldots a}_{x} \underbrace{a . . . a}_{y} \underbrace{a . . . a a \ldots a b \ldots b}_{y}}^{m} \underbrace{k}_{r_{z}} \in L \\
& \text { Thus: } a^{m+k} b^{m} \in L
\end{aligned}
$$

$$
a^{m+k} b^{m} \in L \quad k \geq 1
$$

$\mathcal{B Z l I}: \quad L=\left\{a^{n} b^{n}: n \geq 0\right\}$

$$
\rrbracket
$$

$$
a^{m+k} b^{m} \notin L
$$

$\operatorname{CONTRADICTION}$ (!!!

Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language

Non-regular language $\quad\left\{a^{n} b^{n}: n \geq 0\right\}$

$$
\begin{gathered}
\text { Regular languages } \\
L\left(a^{*} b^{*}\right)
\end{gathered}
$$

